Custom Search
Showing posts with label MAOIs(monoamine oxidase inhibitors). Show all posts
Showing posts with label MAOIs(monoamine oxidase inhibitors). Show all posts

Thursday, May 5, 2011

Treatment option of Depression

Treatment decisions for unipolar depression
. Treatment of choice – second-generation antidepressants such as a SSRI, venlafaxine, mirtazepine, reboxetine, moclobemide.
. Switching – alternative second-generation antidepressant, usually from another group.
. Augmentation of antidepressant response – add lithium, thyroid hormone, an atypical antipsychotic (e.g. risperidone, olanzepine), pindolol, buspirone.
. Other options – ECT, St John’s Wort.
Note: In a survey of 13 studies, switching from an SSRI to either another SSRI or to imipramine, venlafaxine, mirtazepine or buproprion resulted in a response rate of 30–90%.



Electroconvulsive shock treatment
One of the pioneers in the application of electroconvulsive shock treatment (ECT) was the Italian clinician Cerletti who stated that the ‘‘. . . electricity itself is of little importance . . . the important and fundamental factor is the epileptic-like seizure no matter how it is obtained’’. ECT is undoubtedly an effective treatment for a range of psychiatric diseases varying from severe depression and mania to some forms of schizophrenia. Despite the considerable use of ECT over the last 50 years, it still arouses intense emotional and scientific debate. While the opposition to the use of ECT has been more evident in some Continental European countries and the United States than in Britain or Ireland, it was a British study of the use of ECT which, following a survey of over 100 centres, found that many units were badly equipped and had poor facilities and staff training. This report resulted in a considerable improvement in the application of ECT, with the establishment of guidelines governing the managemen and use of the technique; somewhat similar guidelines were instituted by the American Psychiatric Association. It is now generally agreed that ECT is singularly effective and useful. There has been controversy over the relative merits in using unilateral or bilateral ECT. In general, it would appear that unilateral ECT is effective in the treatment of most depressed patients, whereas manic patients appear to respond best to bilateral ECT. Following a course of treatment, twice weekly for several weeks, the success rate in treating depression is about 80%. This is more successful than using antidepressants (up to 70% for a single course of treatment). Seizure monitoring is essential to ensure an adequate response. The principal side effect of ECT is a temporary cognitive deficit, specifically memory loss. There is evidence that such impairment is reduced if unilateral ECT is applied to the non-dominant hemisphere. Brief pulse-current ECT machines are now favoured in Britain and the United States to ensure opt imal efficacy and minimal side effects. As Cerletti hypothesized in 1938, chemically induced seizures are equally effective as ECT and at one time pentamethylenetetrazole or flurothyl were used to produce seizures. However, the safety and ease of application of ECT means that such methods have been largely replaced. While there are various psychological, neurophysiological and neuroendocrine theories that have been developed to explain the beneficial effects of ECT, most attention has been given to the manner in which ECT causes changes in those neurotransmitters that have been implicated in psychiatric illness. It is known that the rise in the seizure threshold during the course of treatment, and the corresponding alteration in cerebral blood flow, may reflect profound changes in cerebral metabolism that could be of crucial importance regarding the action of ECT. Changes in the hypothalamo– pituitary–adrenal axis have also been reported, but most studies suggest that such changes are secondary to the clinica l response. The major emphasis of research has therefore been in the functional changes in brain neurotransmission, but it must be emphasized that most detailed studies have been conducted in rodents and therefore their precise relevance to changes in the human brain are a matter of conjecture.

Experimental studies in rodents have largely centred on the changes in biogenic amine neurotransmitters following chronic ECT treatments. Under these conditions, noradrenaline and 5-HT have been shown to be increased; the number of presynaptic alpha2 receptors and their functional activity has been shown to be decreased, as has the functional activity of the dopamine autoreceptors. Such changes have also been found following the chronic administration of antidepressant drugs. The most consistent changes reported have been those found in postsynaptic receptor function. The functional activity of the postsynaptic beta adrenoceptors is decreased, a change which is also found with antidepressants. The postsynaptic 5-HT2 receptor sensitivity is enhanced by chronic ECT and antidepressant treatment. Thus there appears to be a consistency between the chronic effects of both ECT and antidepressants in enhancing 5-HT responsiveness and diminishing that of noradrenaline. Regarding the dopaminergic system, while there is speculation that changes in the activity of this system may be important in the action of novel antidepressants such as bupropion, the only consistent changes found following chronic application of ECT and antidepressants is a functional decrease in the dopamine autoreceptor activity. This would lead to a reduction in the release of this transmitter. In contrast to the plethora of animal studies, few clinical studies have shown consistent changes in the biogenic amines. There is evidence that the urinary and CSF concentrations of the noradrenaline metabolites normetanephrine and MHPG are decreased, suggesting that the turnover of noradrenaline is decreased, the opposite to that found in animals. Neuroendocrine challenge tests that have been used as probes to assess central noradrenergic function (e.g. with clonidine) show no consistent changes in patients following chronic ECT. Consistent changes have been reported in serotonergic function, however, with enhanced prolactin release occurring in response to a thyroid-stimulating hormone challenge. This is in agreement with the view that chronic ECT sensitizes postsynaptic 5-HT2 receptors. Furthermore, platelet imipramine binding, which according to the results of some studies is increased in the untreated depressed patient, is attenuated by both antidepressant and ECT treatments, although it must be emphasized that not all investigators can replicate these findings. The transport of [3H]5-HT into the platelets of depressed patients is also normalized following ECT and chronic antidepressant treatments. There is no evidence of any change in the dopaminergic system in depressed patients following ECT. The central cholinergic system has been implicated in the pathogenesis of affective disorder and in memory function, which is frequently found to be malfunctioning in depressed patients. The memory deficit elicited by chronic ECT in both patients and animals may be related to the decreased density and function of central muscarinic receptors, but it should be emphasized that the changes reported in cholinergic function are small and their relevance to the clinical situation remains to be established. Brain GABA is closely associated with the induction of seizures. In animals, chronic ECT decreases GABA synthesis in the limbic regions. While consistent changes in GABA-A receptor activity have not been reported, it would appear that GABA-B receptor density increases in the limbic regions following chronic ECT. This is qualitatively similar to the changes that have been reported following antidepressant treatment. The recent interest in the involvement of GABA in the aetiology of depression and in the mode of action of antidepressants is based on the hypothesis that GABA plays a key role not only in the induction of seizures but also in modulating the changes in the serotonergic system that are induced by both antidepressants and ECT. Due to the ubiquitous distribution of peptides as cotransmitters and neuromodulators in the brain, it is not surprising to find that ECT produces changes in their concentrations and in their possible functional activity. Increased metenkephalin concentrations have been reported following chronic ECT. Such changes may be due to increased opioid receptor binding sites. Opioid-mediated behavioural changes such as catalepsy and reduced pain responses are increased following ECT in animals. Whether such changes are relevant to the effects of ECT and antidepressants in depressed patients is still unknown. Other possibilities that have been suggested as a cause of the antidepressant action of ECT include an enhanced adenosine1 receptor density in the cortex; agonists at these receptor sites are known to have anticonvulsant properties, while antagonists such as caffeine can cause convulsions, at least in high doses. Thyroid-stimulating hormone activity has also been shown to be enhanced. This peptide may exert antidepressant effects in its own right, but may also act by modulating both serotonergic and dopaminergic activity.

In general overview and summary, it would appear that ECT produces a number of changes in central neurotransmission that are common to antidepressants. These include a decrease in the functional activity of beta adrenoceptors and an enhanced activity of 5-HT2 and possibly GABA-B receptors. The functional defect in central muscarinic receptors may be associated with the memory deficits caused by ECT treatment. It must be emphasized that the changes reported have largely been derived from animal experiments and their precise relevance to the mode of action of ECT in man is still a matter of conjecture. Adverse effects of drug treatment for depression TCAs Significant side effects have been estimated to occur in about 5% of patients on TCAs, most of these effects being attributed to their antimuscarinic properties, for example, blurred vision, dry mouth, tachycardia and disturbed gastrointestinal and urinary tract function. Orthostatic hypotension due to the block of alpha1 adrenoceptors and sedation resulting from antihistaminic ac tivity frequently occur at therapeutic doses, particularly in the elderly. Excessive sweating is also a fairly common phenomenon, but its precise mechanism is uncertain. In the elderly patient, the precipitation of prostatic hypertrophy and glaucoma by the TCAs is also a frequent cause of concern.

Adverse effects of the TCAs on the brain include confusion, impaired memory and cognition and occasionally delirium; some of these effects have been reported to occur in up to 30% of patients over the age of 50. These effects may occasionally be confused with a recurrence of the symptoms of depression and are probably due to the central antimuscarinic activity of these drugs. Tremor also occurs frequently, particularly in the elderly, and may be controlled by the concurrent administration of propranolol. Neuroleptics are normally not recommended to be used in combination with TCAs as they are liable to accentuate the side effects of the latter drugs. The risk of seizures, and the switch from depression to mania in bipolar patients, has also been reported following TCA administration. Weight gain is a frequent side effect and is of considerable concern, particularly in the female patient, an effect probably associated with increased appetite. Other less common side effects include jaundice (particularly with imipramine), agranulocytosis and skin rashes.

Acute poisoning
This occurs all too frequently with the TCAs and can be life threatening. Death has been reported with doses of 2000mg of imipramine, or the equivalent quantity of other TCAs, which approximates to 10 daily doses or less! Severe intoxication has been reported at doses of 1000 mg. Because of the toxicity of these drugs and the nature of the illness, in which suicidal thoughts are a common feature, it is generally recommended that no more than a 1 week’s supply should be given at any one time to an acutely depressed patient. The symptoms of overdose are to some extent predictable from the antimuscarinic and adrenolytic activity of these drugs. Excitement and restlessness, sometimes associated with seizures, and rapidly followed by coma, depressed respiration, hypoxia, hypotension and hypothermia are clear signs of TCA overdose. Tachycardia and arrhythmias lead to diminished cardiac function and thus to reduced cerebral perfusion, which exacerbates the central toxic effects. It is generally accepted that dialysis and forced diuresis are useless in counteracting the toxicity, but activated charcoal may reduce the absorption of any unabsorbed drug. The risk of cardiac arrhythmias may extend for several days after the patient has recovered from a TCA overdose. It is partly due to the toxicity of the TCAs that the newer non-tricyclic drugs have been developed. All the evidence suggests that the non-tricyclics are much safer in overdose.


Drug interactions
Another area of concern regarding the use of the TCAs is their interaction with other drugs which may be given concurrently. Such interactions may arise due to the drugs competing for the plasma protein binding sites (e.g. phenytoin, aspirin and the phenothiazines) or for the liver microsomal enzyme system responsible for the common metabolism of the drugs (e.g. steroids, including the oral contraceptives, sedatives, apart from the benzodiazepines, and the neuroleptics). All of the TCAs potentiate the sedative effects of alcohol and any other psychotropic drug with sedative properties given concurrently. Smoking potentiates the metabolism of the TCAs. There is a well-established interaction between the TCAs and the adrenergic neuron blocking antihypertensives (e.g. bethanidine and guanethidine) which results from the TCA impeding the uptake of the neuron blocker into the sympathetic nerve terminal, thereby preventing it from exerting its pharmacological effects. There is also a rare, but occasionally fatal, interaction between TCAs and MAOIs in which hyperpyrexia, convulsions and coma can occur. The precise mechanism by which this is brought about is unclear, but it may be associated with a sudden release of 5-HT. Following prolonged TCA administration, abrupt withdrawal of the drug can lead to generalized somatic or gastrointestinal distress, which may be associated with anxiety, agitation, sleep disturbance, movement disorders and even mania. Such symptoms may be associated with central and peripheral cholinergic hyperactivity that is a consequence of the prolonged muscarinic receptor blockade caused by the TCAs.

MAOIs
The toxic effects of these drugs may arise shortly after an overdose, the effects including agitation, hallucinations, hyperreflexia and convulsions. Somewhat surprisingly, both hypo- and hypertension may occur, the former symptoms arising due to the accumulation of the inhibitory transmitter dopamine in the sympathetic ganglia leading to a marked reduction in ganglionic transmission, while hypertension can result from a dramatic release of noradrenaline from both central and peripheral sources. Such toxic effects are liable to be prolonged, particularly when the older irreversible inhibitors such as phenelzine and tranylcypromine are used.

Treatment of such adverse effects should be aimed at controlling the temperature, respiration and blood pressure.



The toxic effects of the MAOIs are more varied and potentially more serious than those of the other classes of antidepressants in common use. Hepatotoxicity has been reported to occur with the older hydrazine type of MAOIs and led to the early demise of iproniazid; the hepatotoxicity does not appear to be related to the dose or duration of the drug administered. Excessive central stimulation, usually exhibited as tremors, insomnia and hyperhidrosis, can occur following therapeutic doses of the MAOIs, as can agitation and hypomanic episodes. Peripheral neuropathy, which is largely restricted to the hydrazine type of MAOI, is rare and has been attributed to a drug-induced pyridoxine deficiency. Such side effects as dizziness and vertigo (presumably associated with hypotension), headache, inhibition of ejaculation (which is often also a problem with the TCAs), fatigue, dry mouth and constipation have also been reported. These side effects appear to be more frequently associated with phenelzine use. They are not associated with any antimuscarinic properties of the drug but presumably arise from the enhanced peripheral sympathetic activity which the MAOIs cause.

Drug interactions
Predictable interactions occur between the MAOIs and any amine precursors, or directly or indirectly acting sympathomimetic amines (e.g. the amphetamines, phenylephrine and tyramine). Such interactions can cause pronounced hypertension and, in extreme cases, stroke. MAOIs interfere with the metabolism of many different classes of drugs that may be given concurrently. They potentiate the actions of general anaesthetics, sedatives, including alcohol, antihistamines, centrally acting analgesics (particularly pethidine due to an enhanced release of 5-HT) and anticholinergic drugs. They also potentiate the actions of TCAs, which may provide an explanation for the use of such a combination in the treatment of therapy-resistant depression. The ‘‘cheese effect’’ is a well-established phenomenon whereby an aminerich food is consumed while the patient is being treated with an irreversible MAOI. Foods which cause such an effect include cheeses, pickled fish, yeast products (red wines and beers, including non-alcoholic v arieties), chocolate and pulses such as broad beans (which contain dopa). It appears that foods containing more than 10mg of tyramine must be consumed in order to produce a significant rise in blood pressure. Furthermore, it is now apparent that there is considerable variation in the tyramine content of many of these foods even when they are produced by the same manufacturer. Therefore it is essential that all patients on MAOIs should be provided with a list of foods and drinks that should be avoided.



Changing a patient from one MAOI to another, or to a TCA, requires a ‘‘wash-out’’ period of at least 2 weeks to avoid the possibility of a drug interaction. There is evidence to suggest that a combination of an MAOI with clomipramine is more likely to produce serious adverse effects than occurs with other TCAs. Regarding the newer non-tricyclic antidepressants, it is recommended that a ‘‘wash-out’’ period of at least 5 weeks be given before a patient on fluoxetine is given an MAOI; this is due to the very long half-life of the main fluoxetine metabolite norfluoxetine. Although it is widely acknowledged that the older MAOIs have the potential to produce serious adverse effects, the actual reported incidence is surprisingly low. Tranylcypromine was one of the most widely used drugs, involving several million patients by the mid 1970s, and yet only 50 patients were reported to have severe cerebrovascular accidents and, of these, only 15 deaths occurred. Nevertheless, it is generally recommended that this drug sh ould not be given to elderly patients or to other patients with hypertension or cardiovascular disease.


Second-generation antidepressants
With the possible exception of maprotiline, which is chemically a modified TCA with all the side effects attributable to such a molecule, all of the newer non-tricyclic drugs have fewer anticholinergic effects and are less cardiotoxic than the older tricyclics. Lofepramine is an example of a modified tricyclic that, due to the absence of a free NH2 group in the side chain, is relatively devoid of anticholinergic side effects. Thus by slightly modifying the structure of the side chain it is possible to retain the efficacy while reducing the cardiotoxicity.

Of the plethora of new 5-HT uptake inhibitor antidepressants (e.g. zimelidine, indalpine, fluoxetine, fluvoxamine, citalopram, sertraline and paroxetine), the most frequently mentioned side effects following therapeutic administration are mild gastrointestinal discomfort, which can lead to nausea and vomiting, occasional diarrhoea and headache. This appears to be more frequent with fluvoxamine than the other SSRI antidepressants. Such changes are attributable to increased peripheral serotonergic function. Some severe idiosyncratic and hypersensitivity reactions such as the Gullain–Barre´ syndrome and blood dyscrasias have led to the early withdrawal of zimelidine and indalpine. For the well-established antidepressants such as fluoxetine, the side effects appear to be mild and welltolerated, although akathisia and agitation have been reported and may be more pronounced in elderly patients. Nomifensine and bupropion are examples of non-tricyclic antidepressants that facilitate catecholaminergic function. These drugs have the advantage over the TCAs of being non-sedative in therapeutic doses. The rare, although fatal, occurrence of haemolytic anaemia and pyrexia following therapeutic administration of nomifensine led to its withdrawal from the market a few years ago. Bupropion was also temporarily withdrawn from clinical use following evidence of seizure induction, but it has now returned to the market in the United States. Idiosyncratic reactions have been reported to occur with the tetracyclic antidepressant mianserin, several cases of agranulocytosis have been reported in different countries. Elderly patients would appear to be most at risk from such adverse effects. Whether such side effects are a peculiarity of the mianserin structure or will also be found with the 6-aza derivative, mirtazepine, is uncertain but preliminary evidence from post-marketing surveys suggests that this is unlikely. Other frequent side effects associated with therapeutic doses of mianserin are sedation and orthostatic hypotension; sedation and weight gain are also problems with mirtazepine. Clearly the major advantage of all the recently introduced antidepressants lies in their relative safety in overdosage and reduced side effects. These factors are particularly important when considering the need for optimal patient compliance and in the treatment of the elderly depressed patient who is more likely to experience severe side effects from antidepressants.

Treatment-resistant depression
It has been estimated that at least 30% of patients with major depression fail to respond to a 6-week course of a TCA antidepressant. A major problem arises however in the definition of ‘‘treatment resistance’’. To date, there appears to be no internationally acceptable definition of the condition. A practical definition which many clinicians find useful is that treatment resistance occurs when the patient fails to respond to:
1. An antidepressant given at maximum dose for 6–8 weeks.
2. An antidepressant from another group administered for 6–8 weeks.
3. A full course of ECT.

The following possibilities may then be considered should the patient fail to respond:
1. Add lithium to a standard antidepressant (e.g. an SSRI) maintaining the plasma lithium concentration at 0.4–0.6mmol/l. This is a wellestablished method with approximately 50% of the patients responding.
However, the plasma lithium concentration must be monitored.
2. Administer a high therapeutic dose of a ‘‘dual action’’ antidepressant such as venlafaxine or possibly mirtazepine. A discontinuation syndrome may occur if venlafaxine is abruptly withdrawn. The symptoms of the discontinuation reaction, which also occur occasionally when some of the SSRIs are abruptly withdrawn, include dizziness, ‘‘electroshock’’ sensations, anxiety and agitation, insomnia, flu-like symptoms, diarrhoea and abdominal pain, parathesis, nausea.
3. Add tri-iodothyronine to a standard antidepressant. This combination is usually well tolerated but monitoring the plasma T3 concentration is important.
4. Add tryptophan to a standard antidepressant (usually an SSRI). There is a danger that the serotonin syndrome may occur however and occasionally the eosinophilia myalgia syndrome. The symptoms that occur with increasing severity are restlessness, diaphoresis, tremor, shivering, myoclonus, confusion, convulsions, death.
5. Add pindolol (a 5-HT1D antagonist as well as a beta adrenoceptor antagonist), which is well researched but there are contradictory findings in the literature with regard to its efficacy. So far, the clinical data suggest that the response to a standard antidepressant is accelerated.
6. Add dexamethasone to a standard antidepressant. This combination is well tolerated for a short course of treatment but so far there is only limited evidence of efficacy from the literature.
7. Add lamotrigine to a standard antidepressant. Again, the support for this approach is largely anecdotal.
8. Add buspirone to a standard antidepressant (usually an SSRI). The evidence in favour of this combination is largely anecdotal.
9. Add an atypical antipsychotic (e.g. olanzapine or risperidone). There is some ‘‘open trial’’ evidence in favour of such combinations.
10. Add mirtazepine to a standard antidepressant (usually an SSRI). Again, the evidence is largely anecdotal.
There are a number of other methods mentioned in the literature, some of which (such as the combination of a TCA with an MAOI) are potentially cardiotoxic and not to be recommended. More recently, a combination of an SSRI with a TCA has become popular but is not to be recommended because of the probability of metabolic interactions involving the cytochrome P450 system that can increase the tissue concentration of even a modest dose of a TCA to a cardiotoxic level.

Tricyclic antidepressants (TCAs), MAOIs(monoamine oxidase inhibitors), SSRI, Classification of antidepressants, and Other Drug Treatments

Tricyclic antidepressants (TCAs)
This group of drugs was introduced during the early 1960s following the chance discovery of the antidepressant effects of imipramine. The therapeutic efficacy of the TCAs has been ascribed to their ability to inhibit the reuptake of noradrenaline and serotonin into the neuron following the release of these transmitters into the synaptic cleft. In addition, these drugs inhibit the muscarinic receptors (causing dry mouth, impaired vision, tachycardia, difficulty in micturition), histamine type-1 receptors (causing sedation) and alpha-1 adrenoceptor antagonism (causing postural hypotension). Such side effects often lead to non-compliance (estimated to be at least 40% in general practice situations) and are more frequent in the elderly. The excellent clinical efficacy of the TCAs has been well documented and the pharmacokinetic profiles are favourable. The most serious disadvantage of the TCAs lies in their cardiotoxicity. Thus, with the exception of lofepramine, all the tricyclic antidepressants, including mapro tiline, block the fast sodium channels in the heart which can lead to heart block and death. Approximately 15% of all patients with major depression die by suicide and a high proportion of these (up to 25%) do so by taking an overdose of TCAs. Such a dose can be as low as 5–10 times the recommended daily dose.Lofepramine differs from the other TCAs in that its structure seems to preclude it from causing the anticholinergic, antihistaminergic and antiadrenergic effects evident with the other TCAs. In addition, it does not appear to be any more cardiotoxic than most of the second-generation antidepressants. The reason for this is an enigma, as the main metabolite of lofepramine is desipramine, a typical cardiotoxic TCA. There is a suggestion that, due to its high lipophilicity, it impedes the access of desipramine to the sodium fast channels in the heart without interfering with their normal function. Thus lofepramine would appear to fulfil many of the requirements of a safe and effective TCA; it has been widely used, particularly in elderly depressed patients, in the past in both the UK and Ireland.

Irreversible inhibitors of monoamine oxidase (MAOIs)
Iproniazid, an MAOI no longer available because of its hepatotoxicity, was the first effective antidepressant to be discovered; it was introduced shortly before the discovery of imipramine. All MAOIs are presumed to have a similar mode of action, namely to inhibit the intra- and interneuronal metabolism of the biogenic amine neurotransmitters (noradrenaline, dopamine and serotonin). These amines are primarily metabolized by MAO-A (noradrenaline and serotonin) or MAO-B (dopamine). The irreversible MAOIs are inhibitors of MAO-A while selegiline (deprenyl), used as an adjunctive treatment for Parkinson’s disease, is a selective, irreversible inhibitor of MAO-B. The main limitation to the clinical use of the MAOIs is due to their interaction with amine-containing foods such as cheeses, red wine, beers (including non-alcoholic beers), fermented and processed meat products, yeast products, soya and some vegetables. Some proprietary medicines such as cold cures contain phenylpropanolamine, ephedrine, etc. and will also interact with MAOIs. Such an interaction (termed the ‘‘cheese effect’’), is attributed to the dramatic rise in blood pressure due to the sudden release of noradrenaline from peripheral sympathetic terminals, an event due to the displacement of noradrenaline from its intraneuronal vesicles by the primary amine (usually tyramine). Under normal circumstances, any dietary amines would be metabolized by MAO in the wall of the gastrointestinal tract, in the liver, platelets, etc. The occurrence of hypertensive crises, and occasionally strokes, therefore limited the use of the MAOIs, despite their proven clinical efficacy, to the treatment of atypical depression and occasionally panic disorder. The side effects of the MAOIs include, somewhat surprisingly, orthostatic hypotension. This is thought to be due to the accumulation of dopamine in the sympathetic cervical ganglia where it acts as an inhibitory transmitter, thereby reducing peripheral vascular tone. Other side effects include psychomotor restlessness and sleep disorder. The MAOIs are cardiotoxic but probably less so than the TCAs. Potentially fatal interactions can however occur when MAOIs are combined with SSRIs or any type of drug which enhances serotonergic function. The interaction can give rise to hyperexcitability, increased muscular tone, myoclonus and loss of consciousness.Reversible inhibitors of monoamine oxidase (RIMAs) Antidepressants of this class, such as moclobemide, have a high selectivity and affinity for MAO-A. However, unlike the MAOIs, the RIMAs are reversible inhibitors of the enzyme and can easily be displaced from the enzyme surface by any primary amine which may be present in the diet. This means that the dietary amines are metabolized by MAO in the wall of the gastrointestinal tract while the enzyme in the brain and elsewhere remains inhibited. Thus the RIMAs have brought the MAOIs back into use as antidepressants in general practice. It is now evident that the RIMAs are not as potent as most currently available antidepressants.

Selective serotonin reuptake inhibitors
Zimelidine was the first SSRI antidepressant to be launched in Europe and, despite its therapeutic success, was withdrawn in the late 1980s due to severe abdominal toxicity. Zimelidine was soon replaced by fluvoxamine which only slowly received acceptance in Europe because of the high incidence of nausea and vomiting; the recommended starting dose was initially too high. Fluoxetine was the third SSRI to be launched in Europe with the advantage of a fixed daily dose (20 mg) and relatively few side effects. Sertraline, paroxetine and citalopram followed so that by the end of the 1980s, the five SSRIs were well established throughout Europe and most of the world.


As the name implies, these drugs have a high affinity for the serotonin transporter both on neuronal and also platelet membranes. There is abundant evidence that the SSRIs inhibit the reuptake of 3H-5-HT into platelets, brain slices and synaptosomal fractions, as illustrated in Table 7.10, but it is clear that there is no direct relationship between the potency of the drug to inhibit 5-HT reuptake in vitro and the dose necessary to relieve depression in the clinic. In experimental studies, it is clear that the increased release of 5-HT from the frontal cortex only occurs following the chronic (2 weeks or longer) administration of any of the SSRIs. Thus the inhibition of 5-HT reuptake may be a necessary condition for the antidepressant activity, but it is not sufficient in itself.


Despite their common ability to enhance serotonergic function in vivo, the SSRIs differ both in terms of their pharmacological profiles and their pharmacokinetics. Thus in addition to their direct inhibitory action on the serotonin transporter, they also affect other neurotransmitter systems which may have some clinical relevance. Citalopram has a modest antihistamine action which might account for its slightly sedative action. Sertraline has slight dopaminomimetic effect which may contribute to its alerting effect, while paroxetine is a muscarinic receptor antagonist. Both fluvoxamine and sertraline have affinity for sigma 1 receptors, the precise importance of which is uncertain but could contribute to the motor side effects which all the SSRIs are reputed to have, albeit very rarely. Fluoxetine, by activating 5-HT 2C receptors, may cause anxiety at least in some patients. Thus differences between the SSRIs are due not only to their different potencies as 5-HT reuptake inhibitors, but also because of their actions on other receptor systems. These differences may be of clinical importance in terms of the special populations to whom the drugs should be administered. Sertraline could also be considered for this group and while drug interactions could be more problematic it does have a slightly alerting profile which could be beneficial. Fluvoxamine has also been extensively studied in the elderly, but nausea could be a problem while fluoxetine, with its very long half-life (with its active metabolite norfluoxetine, amounting to 12 days in the elderly patient) could be beneficial for the non-compliant patient. In the elderly, fluoxetine could cause some anorexia and weight loss however. Paroxetine should be administered with more care in the elderly because of its anticholinergic action. In addition to their proven efficacy in the treatment of all types of depression, the SSRIs have been shown to be the drugs of choice in the treatment of panic disorder, obsessive–compulsive disorder, bulimia nervosa, and as an adjunct to the treatment of alcohol withdrawal and relapse prevention, premenstrual dysphoric disorder and post-traumatic stress disorder. The usefulness of these drugs in treating such a diverse group of disorders reflects the primary role of serotonin in the regulation of sleep, mood, impulsivity and food intake. All the SSRIs have qualitatively similar side effects that largely arise from the increase in serotonergic function and the resulting activation of the different 5-HT receptor types in the brain and periphery. There are differences in the frequency of these effects however which would not be anticipated if all the SSRIs were essentially the same! These effects include nausea, vomiting, diarrhoea or constipation, insomnia, tremor, initial anxiety, dizziness, sexual dysfunction and headache. Loss in body weight may occur but this is rare. The behavioural toxicity of the SSRIs as indicated by their effects on psychomotor function, memory and learning, is low, particularly when compared to the TCAs and same of the sedative secondgeneration antidepressants such as mianserin, mirtazepine and trazodone.


The SSRIs are not cardiotoxic and safety in overdose has been indicated for all these drugs. In general, the severity of the adverse effects is slight and seldom leads to non-compliance. In addition to the five SSRIs currently available, many more compounds are in development which will no doubt be marketed in the near future. Of the new arrivals, escitalopram, the S-enantiomer of citalopram, has already become available in many European countries.

Classification of antidepressants available in Europe
. Antidepressants that inhibit monoamine reuptake
Tricyclic antidepressants (TCAs) – first-generation antidepressants
Examples – tertiary amine type: imipramine, amitriptyline, dothiepin,
clomipramine
– secondary amine type: desipramine, nortriptyline
– other effects: potent antagonists of muscarinic, histaminic and
alpha-1 adrenergic receptors; cardiotoxic
Modified TCA-lofepramine – non-cardiotoxic; low affinity for muscarinic and
alpha-1 adrenoceptors
. Inhibitors of noradrenaline reuptake (NARIs)
Examples – maprotiline: a ‘‘bridged’’ tricyclic with affinity for histamine, H1,
and alpha-1 adrenoceptors. Causes seizures
– reboxetine: not cardiotoxic; does not have an affinity for any
neurotransmitter receptors
. Inhibitors of serotonin reuptake (SSRIs)
Examples – citalopram (1), sertraline (2), fluoxetine (3), paroxetine (4),
fluvoxamine
Slight affinity for (1) histamine, (2) dopamine, (3) serotonin, (4) muscarinic
receptors (see text)
. Specific inhibitors of noradrenaline and serotonin reuptake (SNRIs)
Examples – venlafaxine (more potent inhibitor of 5-HT than noradrenaline
reuptake)
– milnacipran (more potent inhibitor of noradrenaline than 5-HT
reuptake)
. Antidepressants that inhibit monoamine metabolism
Irreversible monoamine oxidase inhibitors (MAOIs)
Examples – phenelzine, pargyline, tranylcypromine, isocarboxazid. All
interact with dietary monoamine to cause the ‘‘cheese effect’’
(see text)
. Reversible inhibitors of monoamine oxidase A (RIMAs)
Examples – moclobemide, pirlindole. At therapeutic doses unlikely to interact
with dietary amines (see text)
. Tetracyclic antidepressants
Examples – mianserin (1), mirtazepine (6-aza-mianserin) (2)
(1) The first second-generation antidepressant; an alpha-2 adrenoceptor antagonist with some affinity for 5-HT1A, 5-HT2A and 5-HT3, alpha-1 adrenoceptors and H1 receptors
(2) Known as a noradrenaline and specific serotonin antidepressant (NaSSA).

More potent affinity for alpha-2 adrenoceptors and 5-HT receptors than mianserin; H1 antagonist
. Other antidepressants (sometimes called ‘‘atypical’’)
Examples – trazodone, nefazodone: 5-HT1A and 5-HT2 antagonists, weak SSRI activity; alpha-1 and H1 antagonism



Noradrenaline reuptake inhibitors (NRIs)
Reboxetine is the only selective and reasonably potent noradrenaline reuptake inhibitor available clinically at the present time. Reboxetine has a chemical structure not dissimilar from viloxazine, an antidepressant which was of only limited clinical interest in the 1970s because of its weak efficacy and unacceptable side effects (nausea, vomiting and occasionally seizures). Unlike the secondary amine TCA antidepressants, such as maprotiline, desipramine, nortriptyline and protriptyline, reboxetine does not affect any other transporter or receptor system and therefore is largely devoid of TCA and SSRI-like side effects. In clinical trials, reboxetine has been shown to be as effective as the SSRIs in the treatment of depression but, unlike the SSRIs, reboxetine does not inhibit any of the cytochrome P450 enzymes in the liver.

In contrast to the widespread interest in 5-HT in depression research and in the development of antidepressants, there would appear to be little interest in developing antidepressants that selectively modulate the noradrenergic system. At the present time, there do not appear to be any drugs of this type in development. For completeness, buproprion should be mentioned even though it is not widely registered as an antidepressant in Europe, partly because of its propensity to cause seizures in some patients. Buproprion, quite widely used in the USA as an antidepressant, appears to inhibit the reuptake of both dopamine and noradrenaline and therefore tends to have a slightly alerting action. In many European countries it has recently been introduced, at a lower than antidepressant dose, in the treatment of nicotine withdrawal in smoking cessation programmes. Lastly, nomifensine was an interesting antidepressant that also had noradrenaline, dopamine and, due to its 4-hydroxy metabolite, serotonin reuptake properties. It was withdrawn some years ago because of the occurrence of haemolytic anaemia in a small number of patients. It was a particularly effective drug in the treatment of depression in patients with epilepsy as, unlike many antidepressants available at that time, it did not affect the seizure threshold.



Selective serotonin and noradrenaline reuptake inhibitors (SNRIs)
In an attempt to combine the clinical efficacy of the TCAs with the tolerability and safety of the SSRIs and NRIs, drugs showing selectivity in inhibiting the reuptake of both noradrenaline and serotonin were developed. Being structurally unrelated to the TCAs however, they lacked their side effects including their cardiotoxicity. To date, venlafaxine is the most widely available of the SNRIs. Although it is known to enhance both serotonergic and noradrenergic function, at the lower clinical dose range it primarily enhances serotonergic function and therefore has the characteristic side effects of an SSRI. At higher therapeutic doses, venlafaxine also inhibits noradrenaline reuptake and therefore resembles a TCA antidepressant. While there is no evidence that venlafaxine is as cardiotoxic as the TCAs, recent studies have indicated that it is at least threefold more likely than the SSRIs to result in death if taken in overdose. Hypertension may occur in some patients when given a high therapeutic dose of venlafaxine. A more potent, but qualitatively similar antidepressant to venlafaxine, duloxetine, is currently in advanced clinical development. Milnacipran is also a dual-action antidepressant which, like venlafaxine, has been shown to be more effective than the SSRIs in the treatment of severe, hospitalized and suicidally depressed patients. At lower therapeutic doses, milnacipran blocks the noradrenaline transporters and therefore resembles the NRI antidepressants. Higher doses result in the serotonergic component becoming apparent (i.e. an SSRI-like action). The main problem with milnacipram appears to be its lack of linear kinetics with some evidence that it has a U-shaped dose–response curve.


Tetracyclic antidepressants
Mianserin was the first of the second-generation antidepressants to be developed. It lacked the amine reuptake inhibitory and MAOI actions of the first-generation drugs and also lacked the cardiotoxicity and anticholinergic activity of the TCAs. However, it was sedative (antihistaminic), caused postural hypotension (alpha-1 blockade) and also caused blood dyscrasias and agranulocytosis in a small number of patients. This has limited the use of mianserin in recent years. Mirtazepine (called a Noradrenaline and Selective Serotonin Antidepressant; NaSSA) is the 6-aza derivative of mianserin and shares several important pharmacological properties with its predecessor, namely its antihistaminic and alpha-1 adrenoceptor antagonistic actions. Like mianserin, mirtazepine also causes weight gain. Nevertheless, mirtazepine is better tolerated and there is no evidence of blood dyscrasias associated with its clinical use. Regarding the mode of action of these tetracyclic compounds, both are potent alpha-2 adrenoceptor antagonists which cause an enhanced release of noradrenaline. The action of mirtazepine on serotonin receptors (5- HT1A, 5-HT2A, 5-HT3) is both direct (5-HT2A and 5-HT3) and indirect (5- HT1A). The complexity of the interaction of the drug with both adrenoceptors and serotonin receptors helps to emphasize the importance of the ‘‘cross talk’’ between these two neurotransmitter systems. Thus the antidepressant effects of both mirtazepine and mianserin are related to the enhancement of noradrenaline release (alpha-2 blockade) and 5-HT2A receptor antagonism. In addition, mirtazepine (and to a lesser extent mianserin) blocks 5-HT3 receptors therefore reducing the anxiety and nausea normally associated with drugs that enhance serotonergic function. The anti-anxiety effect of mirtazepine is ascribed to its indirect activation of the 5-HT1A receptors, an effect also seen following the administration of an SSRI.


Other, or atypical, antidepressants
These include trazodone and a derivative of its metabolite nefazodone, both of which are strongly sedative, an effect which has been attributed to their potent alpha-1 receptor antagonism rather than to any antihistaminic effects. A main advantage of these drugs in the treatment of depression is that they appear to improve the sleep profile of the depressed patient. Their antidepressant activity is associated with their weak 5-HT reuptake inhibition and also a weak alpha-2 antagonism. However, unlike most of the second-generation antidepressants, neither drug is effective in the treatment of severely depressed patients. Furthermore, there is some evidence that trazodone can cause arrythmias, and priapism, in elderly patients.



Herbal antidepressants – St John’s Wort (Hypericum officinalis)
St John’s Wort in recent years has become widely used in Europe and North America for the treatment of mild depression. Unlike all other antidepressants mentioned above, St John’s Wort is obtained through herbalists and health food shops in such countries, the exception being Ireland where it can only be obtained on prescription like any other antidepressant. There are at least 12 placebo-controlled studies proving the efficacy of St John’s Wort against standard antidepressants; all these studies show that the mixture of compounds present in St John’s Wort is effective in mild to moderate, but not severe, depression. Of the main active ingredients of the plant, it would appear that hyperfolin is largely responsible for the antidepressant activity. This compound is an inhibitor of the reuptake of noradrenaline, dopamine and serotonin. In addition, it appears to have some NMDA-glutamate receptor antagonist activity, a property which it shares with many other antidepressants.

Wednesday, May 4, 2011

Pharmacokinetic aspects of MAOIs

Pharmacokinetic aspects of MAOIs
All the commonly used MAOIs (monoamine oxidase inhibitors), exemplified by phenelzine, isocarboxazid and pargyline, are irreversible inhibitors of both forms of the enzyme, forming covalent bonds with the active sites on the enzyme surface. This is the reason why the effects of these drugs last for many days even though their blood concentrations are undetectable. This can result in an accumulation of the drugs following their long-term use as they can also inhibit their own metabolism. These drugs are metabolized in the liver largely by a process of acetylation. Because of the relevance of the genetic status of the patient to the rate of metabolism of many drugs that are acetylated (the half-life of a drug that is acetylated rapidly being shorter and therefore less likely to accumulate than one that is slowly acetylated), it was hypothesized that the acetylator status of patients being treated with the older type of MAOIs may be an important determinant of their therapeutic effects. Recent clinical studies, however, have failed to show that the acetylator status is an important determinant of the therapeutic action of the phenelzine type of drug.

Because the long duration of action of the older irreversible inhibitors of MAO could be responsible for drug and dietary interactions, different types of MAOIs have been synthesized which are reversible inhibitors of the enzyme. Such compounds have the advantage that their action on the enzyme can be terminated by the presence of the high concentration of a natural substrate. Thus, should a patient on such a reversible inhibitor inadvertently take a tyramine-rich food, the tyramine would overcome the inhibitory effect of the drug on the MAO in the gastrointestinal wall and be metabolized. The tyramine would not then be absorbed and lead to the chance of a hypertensive episode. However, the MAO activity in other tissues, including the brain, would remain inhibited by the drug so that the therapeutic benefits would be maintained. In addition to the advantage of being less likely to interact with dietary amines, reversible MAOIs have a shorter duration of action than the irreversible inhibitors. Brofaromine, for example, has a half-life of 12 hours in the brain, in contrast to several days in the case of the phenelzine type of MAOI. A further advantage of the reversible and selective inhibitors lies in their effects on brain amines. Initially an irreversible inhibitor such as clorgyline may show selectivity, but will lose this following chronic treatment due to its long duration of action and possible accumulation. Such an effect is less likely to occur with the reversible MAOIs, which will be metabolized more readily, will not accumulate and will therefore be less likely to inhibit the non-preferred isoenzyme. Several selective MAO-A type inhibitors have now been synthesized (e.g. brofaromine, cimoxatone, moclobemide and toloxatone) which have proven to be clinically effective antidepressants. There is evidence that some of these inhibitors, for example moclobemide, act as pro-drugs in that they form active metabolites in vivo which have a greater affinity for MAO-A than the parent compound. Of the selective and reversible MAO-B inhibitors, caroxazone and Ro 16-6491 are currently undergoing development.