HOW THE BRAIN CONTROLS SEXUAL BEHAVIOUR
We can be pretty sure that, in males, the preoptic area is involved in the control of sexual behaviour because:
1. lesions of this region permanently abolish male sexual behaviour;
2. electrical stimulation of this area can elicit copulatory activity;
3. neuronal and metabolic activity is induced in this area during copulation; and
4. small implants of the male hormone testosterone into this area restore sexual behaviour in castrated rats.
[David Buss (1953– ), a professor in the Evolutionary Psychology Research Lab, University of Texas at Austin, has pioneered the use of modern evolutionary thinking in the psychology of human behaviour and emotion. His primary research has focused on human mating strategies and conflict between the sexes. He has championed the idea that men and women have different long-term and short-term mating strategies, and that monogamous and promiscuous mating strategies may coexist. Some interesting extensions to his work include references to sexual jealously and coercion, homicide, battery and stalking. In an effort to find empirical rather than circumstantial evidence to show that human psychological preferences have evolved and are not only learned, Buss has performed many cross-cultural studies containing up to 10,000 participants from many countries around the globe. Overall, his evolutionary psychology has highlighted the dynamic and contextsensitive nature of evolved psychological mechanisms.]
In females, the preoptic area is involved in the control of reproductive cycles, and is probably directly involved in controlling sexual behaviour too. The ventromedial nucleus of the hypothalamus (VMH) is also involved in sexual behaviour. Outputs from the VMH project to the periaqueductal gray of the midbrain, and this region is also necessary for female sexual behaviour, including lordosis (the position adopted by a female to accept a male) in rodents. This behaviour can be reinstated in ovariectomized female rats by injections of the female hormones oestradiol and progesterone into the VMH brain region. Can the brain help us to understand sexual arousal at the sight and smell of someone to whom we are sexually attracted? By receiving inputs from the amygdala and orbitofrontal cortex, the preoptic area receives information from the inferior temporal visual cortex (including information about facial identity and expression), the superior temporal auditory association cortex, the olfactory system and the somatosensory system. It is presumably by these neural circuits that the primary rewards relevant to sexual behaviour (such as touch and perhaps smell) and the learned stimuli that act as rewards in connection with sexual behaviour (such as the sight of a partner) reach the preoptic area. And it is likely that, in the preoptic area, the reward value of these sensory stimuli is modulated by hormonal state, perhaps (in females) related to the stage of the menstrual cycle – women are more receptive to these sensory stimuli when they are at their most fertile. The neural control of sexual behaviour may therefore be organized in a similar way to the neural controls of motivational behaviour for food. In both systems, external sensory stimuli are needed to provide the reward, and the extent to which they do this depends on the organism’s internal state, mediated by plasma glucose concentration for hunger and hormonal status for sexual behaviour. For sexual behaviour, the internal signal that controls the motivational state and the reward value of appropriate sensory stimuli alters relatively slowly. It may change, for example, over four days in the rat oestrus cycle, or over weeks or even months in the case of many animals that only breed during certain seasons of the year.
The outputs of the preoptic area include connections to the tegmental area in the midbrain. This region contains neurons that are responsive during male sexual behaviour (Shimura & Shimokochi, 1990). But it is likely that only some outputs of the orbitofrontal cortex and amygdala that control sexual behaviour act through the preoptic area. The preoptic area route may be necessary for some aspects of sexual behaviour, such as copulation in males, but the attractive effect of sexual stimuli may survive damage to the preoptic . Research findings suggest that, as for feeding, outputs of the amygdala and orbitofrontal cortex can also influence behaviour through the basal ganglia. Much research remains to be carried out into how the amygdala, orbitofrontal cortex, preoptic area and hypothalamus represent the motivational rewards underlying sexual behaviour. For instance, it has recently been found that the pleasantness of touch is represented in the human orbitofrontal cortex (Francis et al. 1999). Findings such as these can enhance our understanding of sexuality in a wider context.
We can be pretty sure that, in males, the preoptic area is involved in the control of sexual behaviour because:
1. lesions of this region permanently abolish male sexual behaviour;
2. electrical stimulation of this area can elicit copulatory activity;
3. neuronal and metabolic activity is induced in this area during copulation; and
4. small implants of the male hormone testosterone into this area restore sexual behaviour in castrated rats.
[David Buss (1953– ), a professor in the Evolutionary Psychology Research Lab, University of Texas at Austin, has pioneered the use of modern evolutionary thinking in the psychology of human behaviour and emotion. His primary research has focused on human mating strategies and conflict between the sexes. He has championed the idea that men and women have different long-term and short-term mating strategies, and that monogamous and promiscuous mating strategies may coexist. Some interesting extensions to his work include references to sexual jealously and coercion, homicide, battery and stalking. In an effort to find empirical rather than circumstantial evidence to show that human psychological preferences have evolved and are not only learned, Buss has performed many cross-cultural studies containing up to 10,000 participants from many countries around the globe. Overall, his evolutionary psychology has highlighted the dynamic and contextsensitive nature of evolved psychological mechanisms.]
In females, the preoptic area is involved in the control of reproductive cycles, and is probably directly involved in controlling sexual behaviour too. The ventromedial nucleus of the hypothalamus (VMH) is also involved in sexual behaviour. Outputs from the VMH project to the periaqueductal gray of the midbrain, and this region is also necessary for female sexual behaviour, including lordosis (the position adopted by a female to accept a male) in rodents. This behaviour can be reinstated in ovariectomized female rats by injections of the female hormones oestradiol and progesterone into the VMH brain region. Can the brain help us to understand sexual arousal at the sight and smell of someone to whom we are sexually attracted? By receiving inputs from the amygdala and orbitofrontal cortex, the preoptic area receives information from the inferior temporal visual cortex (including information about facial identity and expression), the superior temporal auditory association cortex, the olfactory system and the somatosensory system. It is presumably by these neural circuits that the primary rewards relevant to sexual behaviour (such as touch and perhaps smell) and the learned stimuli that act as rewards in connection with sexual behaviour (such as the sight of a partner) reach the preoptic area. And it is likely that, in the preoptic area, the reward value of these sensory stimuli is modulated by hormonal state, perhaps (in females) related to the stage of the menstrual cycle – women are more receptive to these sensory stimuli when they are at their most fertile. The neural control of sexual behaviour may therefore be organized in a similar way to the neural controls of motivational behaviour for food. In both systems, external sensory stimuli are needed to provide the reward, and the extent to which they do this depends on the organism’s internal state, mediated by plasma glucose concentration for hunger and hormonal status for sexual behaviour. For sexual behaviour, the internal signal that controls the motivational state and the reward value of appropriate sensory stimuli alters relatively slowly. It may change, for example, over four days in the rat oestrus cycle, or over weeks or even months in the case of many animals that only breed during certain seasons of the year.
The outputs of the preoptic area include connections to the tegmental area in the midbrain. This region contains neurons that are responsive during male sexual behaviour (Shimura & Shimokochi, 1990). But it is likely that only some outputs of the orbitofrontal cortex and amygdala that control sexual behaviour act through the preoptic area. The preoptic area route may be necessary for some aspects of sexual behaviour, such as copulation in males, but the attractive effect of sexual stimuli may survive damage to the preoptic . Research findings suggest that, as for feeding, outputs of the amygdala and orbitofrontal cortex can also influence behaviour through the basal ganglia. Much research remains to be carried out into how the amygdala, orbitofrontal cortex, preoptic area and hypothalamus represent the motivational rewards underlying sexual behaviour. For instance, it has recently been found that the pleasantness of touch is represented in the human orbitofrontal cortex (Francis et al. 1999). Findings such as these can enhance our understanding of sexuality in a wider context.