Molecular Genetics and Psychopharmacology
Psychopharmacologist has paid increasing attention to the examination of brain proteins with which psychotropic drugs react, and also the molecular mechanisms that control the synthesis and cellular function of these proteins. For this reason, any understanding of psychopharmacology requires some knowledge of the basic techniques of molecular genetics.
Genes are composed of deoxyribonucleic acid (DNA) which is a long polymer composed of deoxyribonucleotides. Each deoxyribose nucleotide has one of the following purine or pyrimidine bases, namely adenosine, guanine, thymine or cystosine. A single gene may contain from a few thousand to several hundred thousand bases that are arranged in a specific sequence according to the information contained in the gene. It is this sequence of bases which determines the structure of the gene product which is a protein. In addition, the gene also contains information regarding the way in which the gene is expressed during development and in response to environmental stimuli. The role of DNA in storing and transferring genetic material is dependent on the properties of the four bases. These bases are complementary in that guanine is always associated with cytosine, and adenosine with thymine.
Watson and Crick, some 40 years ago, showed that the stability of DNA is due to the double helix structure of the molecule that protects it from major perturbations. Information is ultimately transferred by separating these strands which then act as templates for the synthesis of new nucleic acid molecules. There are two ways in which DNA molecules may act as templates.
Firstly, DNA is used as a template for replicating additional copies during cell division. This occurs by free deoxyribonucleotides binding to the complementary bases of the exposed DNA strand and then being linked by the enzyme DNA polymerase to form a new DNA double helix.
Secondly, small sections of the DNA molecule are used as a template for the synthesis of messenger ribonucleotides (mRNAs) which are responsible for carrying the message for the synthesis of specific proteins. mRNAs differ from DNA in that they are much shorter (generally 7000 base pairs in length) and are single stranded. mRNAs contain the information necessary for the synthesis of a specific protein and also contain the pentose sugar moiety ribose instead of deoxyribose found in DNA. In addition, thymine is replaced by the pyrimidine base uracil which, like thymine, is complementary to adenine.
The human genome contains approximately 100 000 genes which are distributed with a total DNA sequence of 3 billion nucleotides. The DNA of the human genome is divided into 24 exceptionally large molecules each of which is a constituent of a particular chromosome, of which 22 are autosomes and two are sex chromosomes (X and Y chromosomes). Translation of the information encoded in DNA, expressed as a particular nucleotide sequence, into a protein, expressed as an amino acid sequence, depends on the genetic code. In this code, sequences of three nucleotides (termed a codon) represent one of the 20 amino acids that compose the protein molecule. Because there are 64 codons which can be constructed for the four different bases, and only 20 different amino acids that are coded for, several amino acids may be coded for by more than one codon. There are also three codons, called stop codons, that terminate the transfer of information. Furthermore, although all cells contain the same complement of genes, certain cells (for example, the neurons) have specialized genes that encode specific proteins for the synthesis of specific transmitters. The expression of such genes is under the control of regulatory proteins called transcription factors which control the transcription of mRNAs from the genes they control.
The expression of enzymes that control neurotransmitter systems is controlled not only by factors operating during embryonic development, but also by the degree of neuronal activity. Thus the more active the nervous system, the greater the genetically controlled synthesis of the neurotransmitters which clearly play an important role in the behaviour of the organism. Regulation of the genes also determines the response of the brain to drugs, hence the importance of molecular genetics to psychopharmacology. One of the most important areas of molecular genetics concerns the role of specific base sequences, called regulatory sequences, that surrounded the sections of the gene that encode the amino acid sequence of a protein. These regulatory sequences are activated or inactivated by specific transcription factors and it is the complex interaction of regulatory sequences and transcription factors that underlies the adaptation of brain function to the effects of some psychotropic drugs. For example, it is well known that the optimal response to an antidepressant or neuroleptic drug requires several weeks of treatment. Such adaptive changes are probably a reflection of the molecular genetics of neurotransmitter function and may help to explain the lack of success in developing antidepressants or neuroleptics that have a rapid therapeutic action.
Manipulation of Genes
Molecular genetics is to determine the base sequence of the human genome. This is the purpose of the Human Genome Project, an international collaborative research programme aimed at providing a complete analysis of the human genome within the next decade. The first step in such an analysis is to isolate the small sequences of bases in DNA that are transcribed into mRNAs. The information contained in the mRNAs can be isolated and amplified by a technique called cDNA cloning. In this technique, mRNAs from brain tissue, for example, are purified and then treated with reverse transcriptase which converts mRNAs into single complementary strands of DNA. This is called complementary DNA (cDNA). The cDNA provides a template for producing a second strand that is complementary to the first. This double-stranded cDNA is then incubated with bacterial plasmids to produce recombination DNA plasmids. Plasmids may be considered as bacterial viruses that can reproduce themselves when inserted into the appropriate bacteria so that during the process of bacterial cell division multiple copies of the cDNA that had been inserted in the plasmid are formed. As each bacterium is likely to be infected with a plasmid, containing a different type of cDNA, the resulting medium will contain a mixed population of cDNAs from the original brain tissue. This is called a cDNA library.
The individual components of the cDNA library may be obtained by grouping individual bacteria on a culture medium so that they reproduce to form identical clones. This enables a large quantity of specific cDNAs to be produced in a pure form. The cDNA within these plasmid-containing bacteria can then be removed, and the precise nucleotide sequence determined by standard automated analytical procedures. Since the brain expresses many mRNAs that are also found in nonnervous tissue and are therefore of little interest to the psychopharmacologist, it is necessary to isolate only those cDNAs that, for example, encode for a specific enzyme or receptor protein. Several techniques have been developed to achieve this. For example, a specific cDNA plasmid may be inserted into cultured mammalian cells such as fibroblasts that can express the specific receptor or enzyme. Once this has been expressed in the culture medium, the receptor or enzyme can be identified by adding a specific ligand or substrate. This enables those cells that expressed the specific macromolecule of interest to be identified and subsequently isolated. Once a particular cDNA has been isolated in this way it can be used to make unlimited quantities of the macromolecule whose sequence it encodes. As mammalian cells are generally used for this method of amplification, the amino acid sequence is the same as that used in the limbic brain. Furthermore, if, for example, the cDNA encodes a neurotransmitter receptor, it is likely that it will be integrated into the plasma membrane of the cell surface and therefore largely reflect the portion of the receptor in the neuron. This enables such receptor-containing cells to be used for screening the affinity of putative psychotropic drugs on receptors that were derived from human brain. This method is now commonly used in the pharmaceutical industry to screen numerous compounds for their potential therapeutic application: for example, screening compounds for their affinity for the human D4 receptor as potential atypical neuroleptics.
Another important application of cDNAs is to identify specific proteins in a tissue homogenate or tissue section. Since cDNAs undergo complementary base pairing, adding a radioactively labelled cDNA to a homogenate or tissue slice will bind it to the complementary sequence by a process of hybridization. Thus the amount of radioactive cDNA that hybridizes to the tissue or tissue extract is a measure of the amount of mRNA that is complementary to it. When this procedure is undertaken on slices of brain, it is known as in situ hybridization. In this way it is possible to determine the distribution of specific receptors in a tissue by accurately determining the distribution of mRNA that encodes for the receptor protein. This is a particularly valuable technique for the administration of psychotropic drugs. A variety of techniques have now been developed to manipulate gene expression using cDNAs. For example, it is possible to introduce copies of a new gene (in the form of cDNAs) into a cultured cell line by a process of transfection. This is achieved by means of plasmids that transfect the human or mammalian cells in culture. Those cells that have had the DNA sequence integrated into their chromosomes can then be separated from those cells in which integration has not occurred by incubating the mixed cell population with a toxin to which the engineered cells are resistant whereas the normal cells are not. In this way clones of cells that contain the new genetic material can eventually be isolated.
A major advance in this technique has arisen through the development of transgenic mice. This technique involves injecting foreign DNA into the genome of the mouse embryo. As a consequence, the foreign DNA can give rise to a line of mice that contain the foreign DNA. Using this technique, mice have now been produced whose brains express the A4 protein – a marker for Alzheimer’s disease. A variant of this technique is to replace a normal gene with a foreign gene in the chromosome, thereby giving rise to a progeny that lack both the normal gene and its function. Sibling mating then gives rise to offspring which have two defective genes. This method has so far largely been confined to mice which are termed ‘‘knock-out’’ mice. This method could prove to be particularly useful for determining the physiological role of specific neurotransmitter receptors.
Psychopharmacologist has paid increasing attention to the examination of brain proteins with which psychotropic drugs react, and also the molecular mechanisms that control the synthesis and cellular function of these proteins. For this reason, any understanding of psychopharmacology requires some knowledge of the basic techniques of molecular genetics.
Genes are composed of deoxyribonucleic acid (DNA) which is a long polymer composed of deoxyribonucleotides. Each deoxyribose nucleotide has one of the following purine or pyrimidine bases, namely adenosine, guanine, thymine or cystosine. A single gene may contain from a few thousand to several hundred thousand bases that are arranged in a specific sequence according to the information contained in the gene. It is this sequence of bases which determines the structure of the gene product which is a protein. In addition, the gene also contains information regarding the way in which the gene is expressed during development and in response to environmental stimuli. The role of DNA in storing and transferring genetic material is dependent on the properties of the four bases. These bases are complementary in that guanine is always associated with cytosine, and adenosine with thymine.
Watson and Crick, some 40 years ago, showed that the stability of DNA is due to the double helix structure of the molecule that protects it from major perturbations. Information is ultimately transferred by separating these strands which then act as templates for the synthesis of new nucleic acid molecules. There are two ways in which DNA molecules may act as templates.
Firstly, DNA is used as a template for replicating additional copies during cell division. This occurs by free deoxyribonucleotides binding to the complementary bases of the exposed DNA strand and then being linked by the enzyme DNA polymerase to form a new DNA double helix.
Secondly, small sections of the DNA molecule are used as a template for the synthesis of messenger ribonucleotides (mRNAs) which are responsible for carrying the message for the synthesis of specific proteins. mRNAs differ from DNA in that they are much shorter (generally 7000 base pairs in length) and are single stranded. mRNAs contain the information necessary for the synthesis of a specific protein and also contain the pentose sugar moiety ribose instead of deoxyribose found in DNA. In addition, thymine is replaced by the pyrimidine base uracil which, like thymine, is complementary to adenine.
The human genome contains approximately 100 000 genes which are distributed with a total DNA sequence of 3 billion nucleotides. The DNA of the human genome is divided into 24 exceptionally large molecules each of which is a constituent of a particular chromosome, of which 22 are autosomes and two are sex chromosomes (X and Y chromosomes). Translation of the information encoded in DNA, expressed as a particular nucleotide sequence, into a protein, expressed as an amino acid sequence, depends on the genetic code. In this code, sequences of three nucleotides (termed a codon) represent one of the 20 amino acids that compose the protein molecule. Because there are 64 codons which can be constructed for the four different bases, and only 20 different amino acids that are coded for, several amino acids may be coded for by more than one codon. There are also three codons, called stop codons, that terminate the transfer of information. Furthermore, although all cells contain the same complement of genes, certain cells (for example, the neurons) have specialized genes that encode specific proteins for the synthesis of specific transmitters. The expression of such genes is under the control of regulatory proteins called transcription factors which control the transcription of mRNAs from the genes they control.
The expression of enzymes that control neurotransmitter systems is controlled not only by factors operating during embryonic development, but also by the degree of neuronal activity. Thus the more active the nervous system, the greater the genetically controlled synthesis of the neurotransmitters which clearly play an important role in the behaviour of the organism. Regulation of the genes also determines the response of the brain to drugs, hence the importance of molecular genetics to psychopharmacology. One of the most important areas of molecular genetics concerns the role of specific base sequences, called regulatory sequences, that surrounded the sections of the gene that encode the amino acid sequence of a protein. These regulatory sequences are activated or inactivated by specific transcription factors and it is the complex interaction of regulatory sequences and transcription factors that underlies the adaptation of brain function to the effects of some psychotropic drugs. For example, it is well known that the optimal response to an antidepressant or neuroleptic drug requires several weeks of treatment. Such adaptive changes are probably a reflection of the molecular genetics of neurotransmitter function and may help to explain the lack of success in developing antidepressants or neuroleptics that have a rapid therapeutic action.
Manipulation of Genes
Molecular genetics is to determine the base sequence of the human genome. This is the purpose of the Human Genome Project, an international collaborative research programme aimed at providing a complete analysis of the human genome within the next decade. The first step in such an analysis is to isolate the small sequences of bases in DNA that are transcribed into mRNAs. The information contained in the mRNAs can be isolated and amplified by a technique called cDNA cloning. In this technique, mRNAs from brain tissue, for example, are purified and then treated with reverse transcriptase which converts mRNAs into single complementary strands of DNA. This is called complementary DNA (cDNA). The cDNA provides a template for producing a second strand that is complementary to the first. This double-stranded cDNA is then incubated with bacterial plasmids to produce recombination DNA plasmids. Plasmids may be considered as bacterial viruses that can reproduce themselves when inserted into the appropriate bacteria so that during the process of bacterial cell division multiple copies of the cDNA that had been inserted in the plasmid are formed. As each bacterium is likely to be infected with a plasmid, containing a different type of cDNA, the resulting medium will contain a mixed population of cDNAs from the original brain tissue. This is called a cDNA library.
The individual components of the cDNA library may be obtained by grouping individual bacteria on a culture medium so that they reproduce to form identical clones. This enables a large quantity of specific cDNAs to be produced in a pure form. The cDNA within these plasmid-containing bacteria can then be removed, and the precise nucleotide sequence determined by standard automated analytical procedures. Since the brain expresses many mRNAs that are also found in nonnervous tissue and are therefore of little interest to the psychopharmacologist, it is necessary to isolate only those cDNAs that, for example, encode for a specific enzyme or receptor protein. Several techniques have been developed to achieve this. For example, a specific cDNA plasmid may be inserted into cultured mammalian cells such as fibroblasts that can express the specific receptor or enzyme. Once this has been expressed in the culture medium, the receptor or enzyme can be identified by adding a specific ligand or substrate. This enables those cells that expressed the specific macromolecule of interest to be identified and subsequently isolated. Once a particular cDNA has been isolated in this way it can be used to make unlimited quantities of the macromolecule whose sequence it encodes. As mammalian cells are generally used for this method of amplification, the amino acid sequence is the same as that used in the limbic brain. Furthermore, if, for example, the cDNA encodes a neurotransmitter receptor, it is likely that it will be integrated into the plasma membrane of the cell surface and therefore largely reflect the portion of the receptor in the neuron. This enables such receptor-containing cells to be used for screening the affinity of putative psychotropic drugs on receptors that were derived from human brain. This method is now commonly used in the pharmaceutical industry to screen numerous compounds for their potential therapeutic application: for example, screening compounds for their affinity for the human D4 receptor as potential atypical neuroleptics.
Another important application of cDNAs is to identify specific proteins in a tissue homogenate or tissue section. Since cDNAs undergo complementary base pairing, adding a radioactively labelled cDNA to a homogenate or tissue slice will bind it to the complementary sequence by a process of hybridization. Thus the amount of radioactive cDNA that hybridizes to the tissue or tissue extract is a measure of the amount of mRNA that is complementary to it. When this procedure is undertaken on slices of brain, it is known as in situ hybridization. In this way it is possible to determine the distribution of specific receptors in a tissue by accurately determining the distribution of mRNA that encodes for the receptor protein. This is a particularly valuable technique for the administration of psychotropic drugs. A variety of techniques have now been developed to manipulate gene expression using cDNAs. For example, it is possible to introduce copies of a new gene (in the form of cDNAs) into a cultured cell line by a process of transfection. This is achieved by means of plasmids that transfect the human or mammalian cells in culture. Those cells that have had the DNA sequence integrated into their chromosomes can then be separated from those cells in which integration has not occurred by incubating the mixed cell population with a toxin to which the engineered cells are resistant whereas the normal cells are not. In this way clones of cells that contain the new genetic material can eventually be isolated.
A major advance in this technique has arisen through the development of transgenic mice. This technique involves injecting foreign DNA into the genome of the mouse embryo. As a consequence, the foreign DNA can give rise to a line of mice that contain the foreign DNA. Using this technique, mice have now been produced whose brains express the A4 protein – a marker for Alzheimer’s disease. A variant of this technique is to replace a normal gene with a foreign gene in the chromosome, thereby giving rise to a progeny that lack both the normal gene and its function. Sibling mating then gives rise to offspring which have two defective genes. This method has so far largely been confined to mice which are termed ‘‘knock-out’’ mice. This method could prove to be particularly useful for determining the physiological role of specific neurotransmitter receptors.
No comments:
Post a Comment